
International Journal of Scientific & Engineering Research Volume 10, Issue 2, February-2019 908
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

mDroid : A Machine Learning Based
Malware Identification System For Android

P M Dhanasree

Abstract—
 The explosive growth of smart phones and wide acceptance of android brings a large scope for android mobile malwares.
As the number of applications in android platform increases, number of malwares is also increasing rapidly. Since today’s
smartphones are a ubiquitous source of confidential datas, hackers are very much interested in targeting mobile phones.
So security of mobile phones is a major issue. This paper presents a new machine learning based approach for detecting
malwares in the android platform. We perform hybrid analysis over downloaded applications to specify whether it is of
malicious behaviour or not.

Index Terms— Android Malware, APIs, Behaviors, Hybrid analysis, Information flow, Machine learning, System calls.

—————————— ——————————

1 INTRODUCTION
In this epoch of wireless communication, smart phone
is a vital part of our life. It is meant not only for com-
munications but also performs almost all functions of a
PC, which made the smart phones so popular. A life
without a smart phone is too difficult for people of to-
day’s.

In the year of 2018, around 2.53 billon people in the
world use smart phones[1].There is a lot of mobile OSs
existing today which includes android, iOS, windows,
kaiOS etc. As per International Data Corporation (IDC)
market share of android phones in the 3rd quadrant of
2018 is 86.8%[2]. This shows the wide acceptance of
Android OS among other mobile phone OSs.

Why it succeed? There are many reasons. Only
some of the main reasons are mentioned here. First
one, it is cheap and supported by many vendor hard-
ware. Second, its open source nature and support of
multiple platforms. Third reason is that it provides a
large number of APIs. Framework for developing col-
laborative applications is the fourth reason.

Android application’s security is a major con-
cern since it is the largely used smart phone OS in the
world. In January 2019 there are more than 2.5 million

apps in Google Play store[3]. Additional to play store,
android apps are also available through third party
stores. Such stores provides more freedom to develop-
ers and faster speed to market. The approval processes
are less strict than the Google Play Store and so ap-
provals are processed much faster.

Google is trying to ensure security to applications in
many ways. A well known example is the vetting pro-
cess (Process of checking an application before upload-
ing to Play Store).

Another one is Google’s app security improvement
program[4]. In this, Google scans the applications up-
loaded on Google Play for some known vulnerabilities
and gives detailed information on the issues it detects.
Also provides a guidance to fix them. Developers who
fail to fix the problems within the deadline provided by
Google cannot release future updates for their affected
applications through Google Play Store.

Google recently introduced a new feature to
make the users aware about application’s security. For
any applications that haven’t gone through Google's
application verification system, they project a new
screen to alert users that the application they are about
to use hasn’t been verified yet and its their own risk to
use that application. Users even have to tap in “contin-
ue” to move beyond the warning screen.

There is always a risk with third party stores.
The apps in such stores may include malewares. So
downloading a software application from a third-party
app store may infects your smartphone or tablet with
malicious software. Such malware could allow some-
one to take control of your device. It may provide
hackers access to your contacts, passwords, and finan-
cial accounts.

There is a 40% increase in android malwares in
2018. Approximately, 3.2million malicious apps are
identified by the end of 3rd quarter off 2018[5]. In gen-
eral, as the review and supervision of Android applica-

————————————————
• P M Dhanasree, currently pursuing masters degree program in computer

science and engineering in APJ Abdul Kalam University, India, E-mail:
dhanasreepmohan@gmail.com

• Laiji George, Guide, assistant professor, AWH EC, Calicut, India . E-mail:
laijivgeorge@gmail.com

IJSER

http://www.ijser.org/
https://developer.android.com/google/play/asi.html#campaigns
https://support.google.com/cloud/answer/7454865

International Journal of Scientific & Engineering Research Volume 10, Issue 2, February-2019 909
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

tions are inadequate, a reasonable chance exists that
users will download malware. This malware can lead
to monetary loss, information leakage, and other dam-
ages. Thus, the analysis of applications in android plat-
form has become an important topic.

At present, there are mainly three analysis
methods: static, dynamic and hybrid analysis. Static
analysis, as it name suggests perform a statical analysis
without executing the application being tested. It ex-
tracts necessary informations from source code and
binary files and evaluates those informations to find
malicious activities. In contrast dynamic analysis de-
tects malicious behaviour by executing the applica-
tions.

Static and dynamic analysis, both have some
disadvanatges. For examples, static analysis may face
challenges of dynamic code loading and code obfusca-
tion where dynamic have disadvantages such as path
explosion and incomplete detection results. Hybrid, the
more complicated one combines static and dynamic
analysis.

Even though a variety of malware detection
softwares are available, majority of them cannot show
specific malicious behaviours. Moreover, some of them
are based on the database of viruses, so it can identify
only known malwares which are defined in the data-
base and cannot identify unknown malware. Such
malware detecting apps fails when a new malware is
entered.

This work introduces a hybrid analysis tech-
nique to solve the above problems. An Android appli-
cation to detect, analyze, and identify applications is
implemented and evaluated using many sample appli-
cations. The key contributions of our paper are as fol-
lows:

1) A new approach for real-time behavior de-
tection based on Android kernel by using
kernel-level monitoring mechanisms.

2) A new approach to identify malwares by
combining static and dynamic analysis
which can identify both known and un-
known malwares.

3) This approach uses a data-centric tech-
nique which make it capable for recon-
structing the behavior of applications with
less overhead.

The rest of this paper is organized as follows. In Section
II, Related works are given. Section III & IV explains
android system and risk with android system. Over-
view of the proposed system is in Section V. Section VI
gives a detailed description of our mDroid system.
Then, we present the discussion and evaluation in Sec-
tion VII. Finally, Section VIII presents the conclusion.

2 RELATED WORKS
Lanzi et al. [6] characterizes the general interactions
between benign programs and the OS and models the
way in which benign programs access OS resources.
Even though it possess minimal impact on the perfor-
mance of testing machines it faces significant challeng-
es due to the diverse nature of system calls invoked by
different applications.Also, it can detect only the cases
in which malicious code attempts to tamper the set-
tings of other applications or the core OS itself.

In [7], William Enck et al. proposes an efficient,
system-wide dynamic taint tracking and analysis sys-
tem capable of simultaneously tracking multiple
sources of sensitive data and provides real-time analy-
sis by leveraging Android’s virtualized execution envi-
ronment. Taintdroid monitors downloaded, third party
applications by tracking the flow of privacy sensitive
data through third-party applications. It incurs only
14% performance overhead on a CPU-bound micro-
benchmark and imposes negligible overhead on inter-
active third-party applications.But it can be circum-
vented through leaks via implicit flows.

Droidscope [8] by Yan et al. is an android
analysis platform that continues the tradition of virtu-
alization-based malware analysis. It reconstructs both
the OS-level and Java-level semantics simultaneously
and seamlessly. DroidScope is built on top of QEMU
and is able to reconstruct the OS-level and Java-level
semantic views completely from the outside. It is en-
riched with the semantic knowledge and provides a set
of APIs to help analysts implement custom analysis
plugins. Low instrumentation overhead is its ad-
vanatage. But it is unable to obtain real behaviors of
applications and are faced with problems such as anti-
forensic techniques.

A proactive scheme to spot zero-day Android
malware without relying on malware samples and their
signatures is proposed by Grace et al. [11]. It divides
the potential risks into three categories: high-risk, me-
dium-risk, and low-risk and performs a two-order risk
analysis to assess the risks from existing apps for zero-
day malware detection based on this risk classification.
This scalable & fast approach doesn’t consider real time
behavior.

In [10] Zhang et al. proposes VetDroid, a dy-
namic analysis platform for generally analyzing sensi-
tive behaviors in Android apps from a novel permis-
sion use perspective. It overcomes several key chal-
lenges to completely identify all permission sensitive
behaviors and utilizes accurate permission use infor-
mation during the runtime. VetDroid can find more
information leaks than TaintDroid.

A machine learning based system for the de-
tection of malware on Android device is proposed by
Sahs et al. [11]. This uses an open source project, An-
droguard, to extract features from packaged Android

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 2, February-2019 910
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

applications (APKs) and then uses these extracted fea-
tures to train a One-Class Support Vector Machine,
using the Scikit-learn framework. It has very low false
negative rate but imited to permissions and CFGs of
the input application.

Slicing Droids [12] is a Static Android Analysis
Framework presented by Hoffmann et al. for android
apps. Based on static backtracking it recognizes suspi-
cious behavior patterns in an automated way. Alt-
hough it works fast usage of encryption methods and
obfuscation put a heavy burden on it. Also, Slicing
Droids can’t deal with informations that are available
only at runtime.

Reina et al. [15] proposes a VM based dynamic
system call-centric analysis based on the observation
that malicious behaviors are achieved through the in-
vocation of system calls. It dynamically observes the
interactons between the android components and un-
derlying Linux system and reconstructs higher level
behaviour. However, attackers can easily modify an
application for detecting whether it is running on a VM
and then leak no datas at that time.

Dehghantanha et al. in [14] suggests data cen-
tric approaches for mobile security. Similarly,
Choudhary et al. in [15] suggests hybrid analysis tech-
niques for malware detection. A dynamic android
gaming malware detection system based on system call
analysis to classify malicious and legitimate game is
presented in [16]. It is based on difference in system
call pettern and system call frequency inhibited by le-
gitimate and malware games. This approach does not
require source code of the android application being
tested. It can be easily be adopted and implemented.

In [17] Zhao et al. proposes a behavior based
quick and accurate Android malicious detection
scheme based on sensitive API calls. It goes through
sensitivity score calculation and eigenvector creation.
Then uses kNN classifier and the decision tree classifier
for traning. The linear weighted sum method (LWSM)
is used to calculate the final result. The disadvantage is
that it does not focus on the function and class defined
by the application developers.

RanDroid [18] is a machine learning-based
malware detection system for Android platform. The
system extracts requested permissions, vulnerable API
calls along with the existence of app’s key information
such as: dynamic code, reflection code,native code,
cryptographic code and database from applications.
RanDroid is built on concept of static analysis and lacks
dynamic inspection. The results of proposed system
may vary with increasing size of training and testing
data sample set

Li et al. in [19] uses fine grained deep neural
network for android malware detection. It shows the
detail malware families but doesn’t consider the dy-
namic features of Android applications.

3 ANDROID SYSTEM

3.1 Components
As demonstrated in this document, the numbering for
sections upper case Arabic numerals, then upper case
Arabic numerals, separated by periods. Initial para-
graphs after the section title are not indented. Only the
initial, introductory paragraph has a drop cap.

Basic build blocks of an android application
are called components. It makes intra as well as inter
application communication possible through messag-
ing. There are four types of components.

1) Activity - alludes a user screen or a user
interface
2) Service – for performing long-running
background tasks
3) Broadcast receiver - manages system or ap-
plication generated events
4) Content provider - tackles access to a struc-
tured set of data
It can complete a task independently and can

interact with each other to complete the task Commu-
nication between components of different applications
are also possible.

3.2 Intents

It describes an operation to be performed by a
component. Divided into two, explicit and implicit. If
the intent knows which its target component is, such
intents are called explicit intents. If the intent has no
idea about its target components, such intents are cate-
gorized as implicit intent.
3.3 Intent Filter

Intent filter is used to publicize the capability
of a component to perform a specific action. When an
implicit intent request came, system compares the op-
eration to be performed by intent with the publicized
operation of components. If there is a match that par-
ticular component will be assigned as the target com-
ponent for that implicit intent. Here the collaborating
application does not know each other.
3.4 Manifest File

All the components of an application should
be declared in a configuration file called manifest file.
By exposing at least one of its components, an applica-
tion can offer its services to other applications. This can
be done by setting exposed component’s exported flag
attribute to true. If a component (activity, service, or
broadcast receiver) contains intent filter(s), that com-
ponent will be exported by default. For a content pro-
vider, if the application uses an API level less than 17 it
will be treated as exported. Even though the entire
components must be declared in manifest file, it is pos-
sible to declare a broadcast receiver components can in
the source code also

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 2, February-2019 911
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

4. RISK WITH ANDROID
4.1 Permission Based System

An external application need certain permis-
sions from user to access system features, this is the
concept of permission based system in android. When
a user wants to install a third party application in his
device, he should grant some set of permissions re-
quested by the application before installation. If he/ she
didn’t approve the permissions, then the installation of
the application will be cancelled automatically. This
permission request and permission approval consti-
tutes the permission based system.

Collaborative model makes android so ac-
ceptable for both users and developers. Simply, it is the
system of accessing an application from another appli-
cation. Consider an example. Suppose a user is using a
social media application and he wants to capture an
image and send it to a particular recipient. What he/
she generally do is described in steps from 1 to 7. 1)
close the social media application, 2) opens the camera
application, 3) capture photo & save to gallery, 4)close
camera application, 5) again opens the social media
application, 6) attach the photo from gallery, 7) send to
the recipient. With the collaborative model, the user
can access the camera application without closing face-
book application and can send the captured photo di-
rectly to the user instantaneously.

4.2 Security In Android
There are two levels of security implementation in An-
droid. One is at system level and another is at applica-
tion level. In the system level Sandboxing technique is
used. Each application is treated as a separate entity
with its own set of resources and datas. No one other
process can interrupt to the area of another process. But
problem with this technique is that this boundary is
virtual and can be broken at the time of inter applica-
tion communication. In the application level Permis-
sion Based System is used. Components that partici-
pate in inter process communication can be protected
with permissions. The service provider application will
declare permission and protect its exposed component
with this protection. If an application wants to use the
services it should acquire the permission.

Fig 1. An example illustration of collaborative model

and its security
In Fig. 1 there are three applications A, B and

C. Component c2 and c3 of Application A and c5 of
Application B are exposed. Component c2 is protected
with permission p and c5 is protected with permission
p1 while component c3 is not protected. Application A
holds the permission p1. Suppose Application C is a
malicious application trying to access component c5 of
Application B. Since Application C have not acquired
permission p1, required to access c5 it cannot access c5
directly. However Application C can access c5 indirect-
ly through component c3 of Application A. This is pos-
sible because c3 is a public component without any
protection. Application C can access c3 without any
restriction (where as it cannot access c2 because it is
protected with permission p) and since Application A
has already acquired the permission p1, c3 can access
c5 component of Application B. So by accessing c3, Ap-
plication C can indirectly access c5.

This example shows that every component of
an application should be protected in order to ensure
security. Leaving at least one component unprotected is
risky. An unprotected application may put a well pro-
tected application at risk.

4.3 Four Threat Levels Of Android Permissions

• Normal- minimum security risk permission,
granted automatically by the system

• Dangerous-higher security risk permission,
requires explicit user consent

• Signature- used by applications signed with
same certificate, granted by the system after
comparing the certificates & found a match

• Signature Or System-similar to signature level
except that it can also be granted to applica-
tions reside in the system image

4.4 Permission Based Attack
Suppose a user trying to install an application. Then
the application will ask certain permissions and instal-
lation will proceed only if the user grants the permis-
sion. Some applications may ask for extra permissions

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 2, February-2019 912
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

that may include access to almost all features of device
and user data. This is an attack itself called permission
based attack. It goes through the following procedure

1. The developer develops the application.
2. Uploads the application to application store.
3. User downloads the application.
4. Before the installation, application asks for

certain set of permissions.
5. User can either reject the permissions and
cancel the installation or he can grant the per-
missions and proceed to installation
6. Usually, user grants the permissions with or
without understanding the list of permissions
asked.
7. Once the application is installed, applica-
tion/ developer will get access to device fea-
tures and user data.
Sometimes, after a while an installed app may

prompt for update. If device is running in Android 5.0
or lower, this update will be installed automatically.
For higher versions, there will be an extra permission
request to be granted by the user [20].

In permission based systems extra permissions
are also a way to insecurity. Given example shows how
an extra permission make the system prone to attacks.
Suppose user A installs an image to pdf converter ap-
plication with the following permission approval.

1. To read gallery
2. To access camera
3. To read contacts
4. To get complete network access.
It is clear that the 3rd and 4th permissions asked

here are extra permissions. By installing this applica-
tion, it can read contacts in user A’s phone and can
transfer it to server or to any other locations without
the knowledge of user A. So the security breaks.

Also Permission Re-Delegation attack, which
is an attack in which less privileged application misus-
es privileged applications to perform the malicious task
can be occurred[21].

4.5 Risk Of Apis & Information Flows
A set of functions and procedures allowing the creation
of applications that access the features or data of an
operating system, application, or other service are
called as APIs. In general, it is a set of precisely defined
methods of communication among various compo-
nents. Applications have two ends generally. Front-end
and back-end. Front-end deals with UI/UX, creating the
components which is directly visible to the user and
backend deals with data storages, data manipulation
etc. The front end and back-end is linked by the APIs.
Front-end will collect the required datas and call the
required APIs for data manipulation and storage.

APIs bring a lot of adavantages in developing

an android application. It make the development pro-
cedure speedy and easier. Although, it has some securi-
ty risks associated with them. Simply, it is a great door
way for hackers to collect confidential datas and to per-
form malicious activities.

Information flow is simply the movement
of information. An application, which does not exhibit
any malicious behaviour explicitly can track the datas
and informations in the device in which it is installed
and send over network to a server or store it in a data-
base for further manipulations without the owner’s
knowledge. So, there lies a big security risk related
with the information flow.

There will be differences in the information
flows of malicious and benign applications. We cannot
neglect the chances for information flow in the two
applications being same. Eventhough the information
flows are same , the structure of these flows may be
quite different.

5. OVERVIEW OF PROPOSED SYSTEM
The proposed system composed of six modules. Two of
them are on client side and remaining four on server
side. App behavior tracker module in the android de-
vice will track the behaviour of installed applications in
the phone and log creation module will record those
behaviours as a log file. Later, this log file will be send
to server over the network for behaviour rebuilding
purpose and for further analysis. The log analyser
module will analyse the record and rebuilds the behav-
iour as a graph. Code analyser module will perform
APK decompilation and static analysis. The obtained
features will stored in a database(feature library)and
later it is used for training the classifiers. The architec-
ture of the system is in Fig 2.

Fig.2. Architecture of mDroid

6. MDROID
6.1 Initialization

The initialization module is in responsibility of
generating resource files when the mDroid application
is used for the first time. Clearly, some resource files
may need to be copied, and some files may need to be
created, such as the uid_file and directories for log files
and behavior graphs. Nonsystem applications are
shown as a list each time the user opens the mDroid
application. The detailed information of each nonsys-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 2, February-2019 913
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

tem application need to collected. The information in-
cludes the name of the application and the application
package, version(name & number) of the application
and id of the application.
6.2 Behavior Tracking
6.2.1 System Call Interception

We first obtained the address of system call ta-
ble and intercepted the specific system calls. Then
source addresses of required system calls are noted and
let it be handled as usual. Four types of system calls are
intercepted in our system: Android interprocess com-
munication, file operations, network operations, and
process management. Among these system calls, An-
droid interprocess communication can be parsed by
Binder Parser, as most of the system calls depend on
the Android Binder mechanism; other system calls can
be directly parsed using System Call Parser.

6.2.2 Information Flow Extraction

Next step is the discovery of Information-
Flows. Infornation-Flow analysis described here is dif-
ferent from the traditional information flow analysis
which mainly focuses on the discovery of a flow from a
single source to a single sink. Here individual single
source to a single sink flows are aggregated and con-
nected. We leverage data flow analysis techniques to
extract paths contained within each simple flow. If two
information flows share a common path then these two
information flows are grouped together. Each group
can contain multiple information flows, which means it
can contain multiple sources and multiple sinks. We
then analyze these flow groups and extract API se-
quences present within them.
While doing so, we analyze control-flow paths in each
flow group to extract API call sequences. , All the code
paths (control paths with branches and loops) are ex-
amined statement by statement, in the execution order
to extract APIs. Here Android Intents are also consid-
ered. Intent will be treated as a sink since it’s a potential
point to leak data outside.
6.2.3 Other Feature Extraction

Features considered here are information code
segment and resource segment. In order to obtain in-
formation of code segment we need to extract API call
information and data stream information. As we gath-
ered API information already, data stream information
is the only thing that we need to extract. For that, user
definition chain, which contains all the activities of a
data used in a software is used.

6.3 Behavior Rebuilding
 The behaviour rebuilding module in the server is
responsible for rebuilding the application behaviour as
a graph so that it will be more convenient for the users
to understand the behaviors. The behaviour graphs are
generated by using log records prepared by the behav-

iour analysis module in the client device. So these rec-
ords must be sent to server for rebuilding the bahavior.
6.4.1 Graph Creation Algorithm
The graph creation algorithm is presented below. In the
algorithm, “uid” stands for the unique id of an An-
droid application, “pid'” stands for the process id, and
“cid” stands for the id of child process. Since we create
a node for each record in the log file, the time complex-
ity of the algorithm is O(n), where n stands for the
number of records in the log file.
Algorithm : Graph Creation
1) Start
2) Create a root node
3) For each record in the log file, repeats steps from 3 to
8 until the log file become empty
4) Extract uid, pid, cid(if the system call is clone) the
name of the function, and parameters from each log
record
5) Check whether there is a node corresponding to this
uid, if yes go to step 6 else goto step 9
6) Check whether there is a node corresponding to the
pid obtained in step 4, if yes go to step 7 else goto step
8
7) If there is a cid, create a node corresponding to this
cid and make it the child of the node corresponding to
its pid
8) If there is no node created for the pid, create one
node and make it as the child of the node with its uid
9) If no node for uid, create a node and make itas the
child of root node.
10) Stop

6.4 Constructing A Feature Library
After the feature extraction we need to create a library
of these features. The extracted features(ie. Information
flow features, API features, data stream features and
resource segment information) of both malwares and
benign applications are stored in this library for train-
ing and identification purpose. During the training
process, we converted the feature library into a feature
vector of length n where the i-th dimension of the vec-
tor is the i-th functional feature in the library.

6.5 Apk Decompilation
The server receives the APK of an Android application
and extract permissions and APIs from it[23]. For de-
compiling APKs, a decompiler provided by Google
called, APKTool is used. The tool generates files such as
source codes, a configuration file, and resources. By
traversing the configuration file (AndroidManifest.xml)
list of permissions can be obtained. Android applica-
tions are often built using java. So the android system
own a java virtual machine implementation called
Dalvik VM itself. The Dalvik VM uses the dex format
and smali/baksmali is the assembler for the dex format
used by Dalvik. The APK decompilation tool decom-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 2, February-2019 914
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

piles the .dex file into .smali files. No tools to decom-
pile back to java. Hence, we traversed all smali files and
each and every line starting with an “invoke,” (which
represents a function call) is extracted. Then, the APIs
are extracted by parsing those lines.

6.6 Permission, Api And Application
As the first step, four numbers need to be calculated:
the number of malware applications with the permis-
sion, the number of benign applications with the per-
mission, the number of malware applications without
the permission, and the number of benign applications
without the permission. Similarly, these four numbers
are calculated for each APIs. In order to find whether
there is a relation between presence of a permission
and the nature of an application owning the permission
a chi-square test is applied. The below given equations
(1) & (2) are used to calculate the chi-square values[22].
In the equations, a stands for the number of malware
applications with the permission, b stands for the
number of benign applications with the permission, c
stands for the number of malware applications without
the permission, d stands for the number of benign ap-
plications without the permission, and n stands for the
number of applications. In the case where the value of
a, b, c, or d is less than 5 and value of n is greater than
40, the correction equation (1) is used. In normal cases,
equation (2) is used.

This chi-square test considers permissions and

APIs that are used more than 50 times. Chi-square val-
ue and the correlation between the presence of permis-
sion and the nature of an application is directly propor-
tional. As the value increases, correlation also increases.
After ordering the chi-square test values first 80 are
selected and defined as characteristic attributes. The
final step is to train our naïve Bayes classifier with
these characteristic attributes.
We calculate the conditional probabilities of the charac-
teristic attributes. Using the data in the database, we
can determine the probability of an application being
malware with a certain characteristic attribute, proba-
bility of an application being malware due to without a
certain characteristic attribute, the probability of an
application being benign with a certain characteristic
attribute, and the probability of an application being
benign without a certain characteristic attribute.
6.7. Classifier Training & Malware Identication
We collected samples of malware and benign applica-
tion and extracted features of both category. We used

support vector machine as well as naïve Bayes classifier
in this work. Support vector machine can be trained by
feature vectors mentioned in Section 6.4. Our system
learn how malwares leverage information flows and
what types of behavior it contains and notes the same
in case of benign applications also. We use this as the
features to train the SVM. So that, our system will be
able to specify if an app leverages information flows in
a benign or malicious way. In general, our classification
system will detect if an information flow is suspicious
or not based on the app’s behavior along the infor-
mation flow.
In short, the app is benign if the flows perform mean-
ingful operations similar in structure to other benign
apps and malicious if the structure is similar to other
malicious apps. With the information flow features, we
also considered code segment and resource segment
informations to train SVM. Since our proposed system
classifies both categories of applications training using
samples of both are preferred.
The steps for training naive Bayes classifier is as fol-
lows. First, the server receives the APK and the log file
of an application from the client. Then, the APK is
parsed according to Section VI. E.. In addition, we also
extract the permissions and APIs recorded by behavior
tracker from the log file. Then, using the probabilities
from before, the probability of the application being
malware as well as the probability of the application
being benign can be determined. Finally, the two prob-
abilities are compared to identify the nature of applica-
tion.

Now we have two set of results, one from SVM
and one from NB. Finally by comparing these two re-
sults we finalize the application into either malicious or
benign. If any of the two result specifies the application
has malicious activity, we categories it as malware. Our
two set identification is intented to ensure that no ap-
plication could overcome the test. Even if it could es-
cape from one test by any chance, it should be caught
by other one.

7. DISCUSSION & EVALUATION
In this paper, we have proposed and implemented a
real time behaviour analysis system to identify mal-
ware applications in android platform. We have con-
sidered features such as permissions, APIs, information
flow, code segment and resource segment information.
The multiple features are expected to improve the effi-
ciency of the malware identification. We trained the
system using samples of both malware and benign ap-
plication. On testing, our proposed system is proved to
be efficient and obtained an accuracy rate of 95.39%.
In future, we think the system can be improved by fol-
lowing ways.

1) Improve the graphical representation by inte-
grating informations from both static and dy-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 2, February-2019 915
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

namic analysis . i.e. by integrating all the fea-
tures considered.

2) Extend the analysis to identify malware
games.

3) Improve the accuracy by including different
type of classifiers such as kNN, DT and RF.

4) Enhance the system by considering more fea-
tures such as

a. Sytem call frequency
b. Presence of key information such as:

crypto code; dynamic code; native
code; reflection code and database

8. CONCLUSION
Based on several features such as permissions, APIs,
and information flow a new system for identifying an-
droid applications is proposed. This real time system
performs a hybrid analysis on applications by leverag-
ing machine learning to detect malicious behaviors
exhibited by them. Required features are extracted and
trained classifiers with these features. On evaluation,
our system found to be efficient and obtained an accu-
racy rate of 95.39%.

REFERENCES

[1] STATISTA -
https://www.statista.com/statistics/467163/forecast-
of-smartphone-users-in-india/.W.-K. Chen, Linear
Networks and Systems. Belmont, Calif.: Wadsworth,
pp. 123-135, 1993. (Book style)

[2] IDC -
https://www.idc.com/promo/smartphonemarket-
share/os

[3] APPBRAIN -
https://www.appbrain.com/stats/number-of-
android-apps

[4] DEVELOPER -
https://developer.android.com/google/play/asi

[5] GDATASOFTWARE -
https://www.gdatasoftware.com/blog/2018/11/3125
5-cyber-attacks-on-android-devices-on-the-rise

[6] A. Lanzi, D. Balzarotti, C. Kruegel, M. Christo-
dorescu and E. Kirda, “AccessMiner: using system-
centric models for malware protection,” in Proc.
17th ACM Conf. Computer and Communications Secu-
rity, Chicago, IL, USA, 2010, pp. 399-412.

[7] W. Enck, P. Gilbert, B. G. Chun, L. P. Cox, J. Y.
Jung, P. McDaniel and A. N. Sheth, “TaintDroid:
An information-flow tracking system for realtime
privacy monitoring on smartphones,” in Proc. 9th
USENIX Conf. Operating systems design and imple-
mentation, Vancouver, BC, Canada, 2010, pp. 393-
407.

[8] L. K. Yan and H. Yin, “DroidScope: seamlessly
reconstructing the OS and dalvik semantic views
for dynamic android malware analysis,” in Proc.

21st USENIX Conf. Security symposium, Bellevue,
WA, 2012, pp. 29-29.

[9] M. Grace, Y. Zhou, Q. Zhang, S.H. Zou and X. X.
Jiang, “Riskranker: scalable and accurate zero-day
android malware detection,” in Proc. 10th Int. Conf.
Mobile systems, applications, and services, Low Wood
Bay, Lake District, UK, 2012, pp. 281-294.

[10] Y. Zhang, M. Yang, B. Q. Xu, Z. M. Yang, G. F. Gu,
P. Ning, X. S. Wang and B. Y. Zang, “Vetting unde-
sirable behaviors in android apps with permission
use analysis,” in Proc. ACM SIGSAC Conf. Computer
and communications security, Berlin, Germany, 2013,
pp. 611-622.

[11] J. Sahs and L. Khan, “A machine learning approach
to Android malware detection,” in Proc. EISIC,
Odense, Denmark, 2012, pp. 141-147.

[12] J. Hoffmann, M. Ussath, T. Holz and M. Spreitzen-
barth, “Slicing droids: program slicing for smali
code,” in Proc. 28th Annual ACM Symposium on Ap-
plied Computing, Coimbra, Portugal, 2013, pp. 1844-
1851.

[13] A. Reina, A. Fattori and L. Cavallaro, “A system
call-centric analysis and stimulation technique to
automatically reconstruct android malware behav-
iors,” in Proc. ACM European Workshop on Systems
Security, Prague, 2013, pp. 1-6.

[14] A . Deghantanha, N . Izura and R. Mahmod, “To-
wards Data Centric Mobile Security”, 2011 17th Inter-
national Conference on Information Assurance and
Security (IAS)

[15] M . Choudhary and B . Kishore, “HAAMD:Hybrid
Analysis for Android Malware Detection”, 2018 Inter-
national Conference on Computer Communication and
Informatics (ICCCI -2018), Jan. 04 – 06, 2018, Coimba-
tore, INDIA

[16] M . Jaiswal et al., “Android Gaming Malware De-
tection Using System Call Analysis”, 2018 6th In-
ternational Symposium on Digital Forensic and Securi-
ty (ISDFS)

[17] C . Zhao et al., “Quick and Accurate Android
Malware Detection Based on Sensitive APIs”, 2018
IEEE International Conference on Smart Internet of
Things.

[18] J. D. Koli, ” RanDroid:Android Malware Detection
Using Random Machine Learning Classifiers”,
IEEE International Conference on Technologies for
Smart-City Energy Security and Power (ICSESP-
2018), March 28-30, 2018, Bhubaneswar, India

[19] D . Li et al., “Fine-grained Android Malware De-
tection based on Deep Learning”, 2018 IEEE Con-
ference on Communcations and Network Security
(CNS): IEEE CNS 2018 – Posters.

[20] Faiz Mohammad Faqiry. , Rizwanur Rahman. ,
Deepak Singh Tomar. , 2017. Scrutinizing Permis-
sion Based Attack On Android Os Platform Devic-

IJSER

http://www.ijser.org/
https://www.statista.com/statistics/467163/forecast-of-smartphone-users-in-india/
https://www.statista.com/statistics/467163/forecast-of-smartphone-users-in-india/
https://www.appbrain.com/
https://developer.andr/
https://www.gdatasof/
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8345571
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8345571
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8345571

International Journal of Scientific & Engineering Research Volume 10, Issue 2, February-2019 916
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

es. International Journal of Advanced Research in
Computer Science. Vol 8, No. 7. pp. 421-426.

[21] Arushi Jain. , Prachi. , 2016. Android Security:
Permission Based Attacks. In Proceedings of the
International Conference on Computing for Sus-
tainable Global Development. IEEE, pp. 2754-2759.

[22] S. Sun et al., “Real-Time Behaviour Analysis and
Identification for Android Application”, IEEE Ac-
cess.Vol.6,July2018,doi: 10.1109/ACCESS.2018.2853
121.

[23] F. Yu, S. Anand, I. Dillig and A. Aiken, “Ap-
poscopy: semantics-based detection of Android
malware through static analysis,” in Proc. 22nd
ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, Hong Kong, China,
2014, pp. 576-587.

[24] F . Shen et al., “Android Malware Detection Using
Complex-Flows”, 2017 IEEE 37th International Con-
ference on Distributed Computing Systems (ICDCS)

[25] J . Du et al. “A Dynamic and Static Combined An-
droid Malicious Code Detection Model Based on
SVM”, The 2018 5th International Conference on Sys-
tems and Informatics (ICSAI 2018).

IJSER

http://www.ijser.org/
https://doi.org/10.1109/ACCESS.2018.2853121
https://doi.org/10.1109/ACCESS.2018.2853121
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7976702
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7976702

International Journal of Scientific & Engineering Research Volume 10, Issue 2, February-2019 917
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

IJSER

http://www.ijser.org/

	2 RELATED WORKS
	3 ANDROID SYSTEM
	References

