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Abstract—  
 The explosive growth of smart phones and wide acceptance of android brings a large scope for android mobile malwares. 
As the number of applications in android platform increases, number of malwares is also increasing rapidly. Since today’s 
smartphones are a ubiquitous source of confidential datas, hackers are very much interested in targeting mobile phones. 
So security of mobile phones is a major issue. This paper presents a new machine learning based approach for detecting 
malwares in the android platform. We perform hybrid analysis over downloaded applications to specify whether it is of 
malicious behaviour or not.  

Index Terms— Android Malware, APIs, Behaviors, Hybrid analysis, Information flow, Machine learning, System calls.   

——————————      —————————— 
 
1 INTRODUCTION    
In this epoch of wireless communication, smart phone 
is a vital part of our life. It is meant not only for com-
munications but also performs almost all functions of a 
PC, which made the smart phones so popular. A life 
without a smart phone is too difficult for people of to-
day’s.  

In the year of 2018, around 2.53 billon people in the 
world use smart phones[1].There is a lot of mobile OSs 
existing today which includes android, iOS, windows, 
kaiOS etc. As per International Data Corporation (IDC) 
market share of android phones in the 3rd quadrant of 
2018 is 86.8%[2]. This shows the wide acceptance of 
Android OS among other mobile phone OSs. 

Why it succeed? There are many reasons. Only 
some of the main reasons are mentioned here. First 
one, it is cheap and supported by many vendor hard-
ware. Second, its open source nature and support of 
multiple platforms. Third reason is that it provides a 
large number of APIs.  Framework for developing col-
laborative applications is the fourth reason. 

Android application’s security is a major con-
cern since it is the largely used smart phone OS in the 
world. In January 2019 there are more than  2.5 million  

 

 

 

 

apps in Google Play store[3]. Additional to play store, 
android apps are also available through third party 
stores. Such stores provides more freedom to develop-
ers and faster speed to market. The approval processes 
are less strict than the Google Play Store and so ap-
provals are processed much faster. 

Google is trying to ensure security to applications in 
many ways. A well known example is the vetting pro-
cess (Process of checking an application before upload-
ing to Play Store).  

Another one is Google’s app security improvement 
program[4]. In this, Google scans the applications up-
loaded on Google Play for some known vulnerabilities 
and gives detailed information on the issues it detects. 
Also provides a guidance to fix them. Developers who 
fail to fix the problems within the deadline provided by 
Google cannot release future updates for their affected 
applications through Google Play Store. 

Google recently introduced a new feature to 
make the users aware about application’s security. For 
any applications that haven’t gone through Google's 
application verification system, they project a new 
screen to alert users that the application they are about 
to use hasn’t been verified yet and its their own risk to 
use that application. Users even have to tap in “contin-
ue” to move beyond the warning screen.  

There is always a risk with third party stores. 
The apps in such stores may include malewares. So 
downloading a software application from a third-party 
app store may infects your smartphone or tablet with 
malicious software. Such malware could allow some-
one to take control of your device. It may provide 
hackers access to your contacts, passwords, and finan-
cial accounts.  

There is a 40% increase in android malwares in 
2018. Approximately, 3.2million malicious apps are 
identified by the end of 3rd quarter off 2018[5]. In gen-
eral, as the review and supervision of Android applica-
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tions are inadequate, a reasonable chance exists that 
users will download malware. This malware can lead 
to monetary loss, information leakage, and other dam-
ages. Thus, the analysis of applications in android plat-
form has become an important topic. 

At present, there are mainly three analysis 
methods: static, dynamic and hybrid analysis. Static 
analysis, as it name suggests perform a statical analysis 
without executing the application being tested. It ex-
tracts necessary informations from source code and 
binary files and evaluates those informations to find 
malicious activities. In contrast dynamic analysis de-
tects malicious behaviour by executing the applica-
tions. 

Static and dynamic analysis, both have some 
disadvanatges. For examples, static analysis may face 
challenges of dynamic code loading and code obfusca-
tion where dynamic have disadvantages such as path 
explosion and incomplete detection results. Hybrid, the 
more complicated one combines static and dynamic 
analysis.  

Even though a variety of malware detection 
softwares are available, majority of them cannot show 
specific malicious behaviours. Moreover, some of them 
are based on the database of viruses, so it can identify 
only known malwares which are defined in the data-
base and cannot identify unknown malware. Such 
malware detecting apps fails when a new malware is 
entered. 

This work introduces a hybrid analysis tech-
nique to solve the above problems. An Android appli-
cation to detect, analyze, and identify applications is 
implemented and evaluated using many sample appli-
cations. The key contributions of our paper are as fol-
lows: 

1) A new approach for real-time behavior de-
tection based on Android kernel by using 
kernel-level monitoring mechanisms. 

2) A new approach to identify malwares by 
combining static and dynamic analysis 
which can identify both known and un-
known malwares. 

3) This approach uses a data-centric tech-
nique which make it capable for recon-
structing the behavior of applications with 
less overhead. 

The rest of this paper is organized as follows. In Section 
II, Related works are given. Section III & IV explains 
android system and risk with android system. Over-
view of the proposed system is in Section V. Section VI 
gives a detailed description of our mDroid system. 
Then, we present the discussion and evaluation in Sec-
tion VII. Finally, Section VIII presents the conclusion. 

 

2 RELATED WORKS  
Lanzi et al. [6] characterizes the general interactions 
between benign programs and the OS and models the 
way in which benign programs access OS resources. 
Even though it possess minimal impact on the perfor-
mance of testing machines it faces significant challeng-
es due  to the diverse nature of system calls invoked by 
different applications.Also, it can detect only the cases 
in which malicious code attempts to tamper the set-
tings of other applications or the core OS itself. 

In [7], William Enck et al. proposes an efficient, 
system-wide dynamic taint tracking and analysis sys-
tem capable of simultaneously tracking multiple 
sources of sensitive data and provides real-time analy-
sis by leveraging Android’s virtualized execution envi-
ronment. Taintdroid monitors downloaded, third party 
applications by tracking the flow of privacy sensitive 
data through third-party applications. It incurs only 
14% performance overhead on a CPU-bound micro-
benchmark and imposes negligible overhead on inter-
active third-party applications.But it can be circum-
vented through leaks via implicit flows. 

Droidscope [8] by Yan et al. is an android 
analysis platform that continues the tradition of virtu-
alization-based malware analysis. It reconstructs both 
the OS-level and Java-level semantics simultaneously 
and seamlessly. DroidScope is built on top of QEMU 
and is able to reconstruct the OS-level and Java-level 
semantic views completely from the outside. It is en-
riched with the semantic knowledge and provides a set 
of APIs to help analysts implement custom analysis 
plugins. Low instrumentation overhead is its ad-
vanatage. But it is unable to obtain real behaviors of 
applications and are faced with problems such as anti-
forensic techniques. 

A proactive scheme to spot zero-day Android 
malware without relying on malware samples and their 
signatures is proposed by Grace et al. [11]. It divides 
the potential risks into three categories: high-risk, me-
dium-risk, and low-risk and performs a two-order risk 
analysis to assess the risks from existing apps for zero-
day malware detection based on this risk classification. 
This scalable & fast approach doesn’t consider real time 
behavior. 

In [10] Zhang et al. proposes VetDroid, a dy-
namic analysis platform for generally analyzing sensi-
tive behaviors in Android apps from a novel permis-
sion use perspective. It overcomes several key chal-
lenges to completely identify all permission sensitive 
behaviors and utilizes accurate permission use infor-
mation during the runtime. VetDroid can find more 
information leaks than TaintDroid.  

A machine learning based system for the de-
tection of malware on Android device is proposed by 
Sahs et al. [11]. This uses an open source project, An-
droguard, to extract features from packaged Android 
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applications (APKs) and then uses these extracted fea-
tures to train a One-Class Support Vector Machine, 
using the Scikit-learn framework. It has very low false 
negative rate but imited to permissions and CFGs of 
the input application.  

Slicing Droids [12] is a Static Android Analysis 
Framework presented by Hoffmann et al. for android 
apps. Based on static backtracking it recognizes suspi-
cious behavior patterns in an automated way. Alt-
hough it works fast usage of encryption methods and 
obfuscation put a heavy burden on it. Also, Slicing 
Droids can’t deal with informations that are available 
only at runtime. 

Reina et al. [15] proposes a VM based dynamic 
system call-centric analysis based on the observation 
that malicious behaviors are achieved through the in-
vocation of system calls. It dynamically observes the 
interactons between the android components and un-
derlying Linux system and reconstructs higher level 
behaviour. However, attackers can easily modify an 
application for detecting whether it is running on a VM 
and then leak no datas at that time. 

Dehghantanha et al. in [14] suggests data cen-
tric approaches for mobile security. Similarly, 
Choudhary et al. in [15] suggests hybrid analysis tech-
niques for malware detection. A dynamic android 
gaming malware detection system based on system call 
analysis to classify malicious and legitimate game is 
presented in [16]. It is based on difference in system 
call pettern and system call frequency inhibited by le-
gitimate and malware games. This approach does not 
require source code of the android application being 
tested. It can be easily be adopted and implemented. 

In [17] Zhao et al. proposes a behavior based 
quick and accurate Android malicious detection 
scheme based on sensitive API calls. It goes through 
sensitivity score calculation and eigenvector creation. 
Then uses kNN classifier and the decision tree classifier 
for traning. The linear weighted sum method (LWSM) 
is used to calculate the final result. The disadvantage is 
that it does not focus on the function and class defined 
by the application developers. 

RanDroid [18] is a machine learning-based 
malware detection system for Android platform. The 
system extracts requested permissions, vulnerable API 
calls along with the existence of app’s key information 
such as: dynamic code, reflection code,native code, 
cryptographic code and database from applications. 
RanDroid is built on concept of static analysis and lacks 
dynamic inspection. The results of proposed system 
may vary with increasing size of training and testing 
data sample set 

Li et al. in [19] uses fine grained deep neural 
network for android malware detection. It shows the 
detail malware families but doesn’t consider the dy-
namic features of Android applications. 

3 ANDROID SYSTEM 

3.1 Components 
As demonstrated in this document, the numbering for 
sections upper case Arabic numerals, then upper case 
Arabic numerals, separated by periods. Initial para-
graphs after the section title are not indented. Only the 
initial, introductory paragraph has a drop cap. 

Basic build blocks of an android application 
are called components. It makes intra as well as inter 
application communication possible through messag-
ing. There are four types of components. 

1) Activity - alludes a user screen or a user    
interface  
2) Service – for performing long-running 
background tasks 
3) Broadcast receiver - manages system or ap-
plication generated events 
4) Content provider - tackles access to a struc-
tured set of data 
It can complete a task independently and can 

interact with each other to complete the task Commu-
nication between components of different applications 
are also possible. 
 
3.2 Intents  

It describes an operation to be performed by a 
component. Divided into two, explicit and implicit. If 
the intent knows which its target component is, such 
intents are called explicit intents. If the intent has no 
idea about its target components, such intents are cate-
gorized as implicit intent. 
3.3 Intent Filter  

Intent filter is used to publicize the capability 
of a component to perform a specific action. When an 
implicit intent request came, system compares the op-
eration to be performed by intent with the publicized 
operation of components. If there is a match that par-
ticular component will be assigned as the target com-
ponent for that implicit intent. Here the collaborating 
application does not know each other. 
3.4 Manifest File 

All the components of an application should 
be declared in a configuration file called manifest file. 
By exposing at least one of its components, an applica-
tion can offer its services to other applications. This can 
be done by setting exposed component’s exported flag 
attribute to true. If a component (activity, service, or 
broadcast receiver) contains intent filter(s), that com-
ponent will be exported by default. For a content pro-
vider, if the application uses an API level less than 17 it 
will be treated as exported. Even though the entire 
components must be declared in manifest file, it is pos-
sible to declare a broadcast receiver components can in 
the source code also 
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4. RISK WITH ANDROID 
4.1 Permission Based System  

An external application need certain permis-
sions from user to access system features, this is the 
concept of permission based system in android. When 
a user wants to install a third party application in his 
device, he should grant some set of permissions re-
quested by the application before installation. If he/ she 
didn’t approve the permissions, then the installation of 
the application will be cancelled automatically. This 
permission request and permission approval consti-
tutes the permission based system. 

Collaborative model makes android so ac-
ceptable for both users and developers. Simply, it is the 
system of accessing an application from another appli-
cation. Consider an example. Suppose a user is using a 
social media application and he wants to capture an 
image and send it to a particular recipient. What he/ 
she generally do is described in steps from 1 to 7. 1) 
close the social media application, 2) opens the camera 
application, 3) capture photo & save to gallery, 4)close 
camera application, 5) again opens the social media 
application, 6) attach the photo from gallery, 7) send to 
the recipient. With the collaborative model, the user 
can access the camera application without closing face-
book application and can send the captured photo di-
rectly to the user instantaneously. 

 
4.2 Security In Android 
There are two levels of security implementation in An-
droid. One is at system level and another is at applica-
tion level. In the system level Sandboxing technique is 
used. Each application is treated as a separate entity 
with its own set of resources and datas. No one other 
process can interrupt to the area of another process. But 
problem with this technique is that this boundary is 
virtual and can be broken at the time of inter applica-
tion communication. In the application level Permis-
sion Based System is used. Components that partici-
pate in inter process communication can be protected 
with permissions. The service provider application will 
declare permission and protect its exposed component 
with this protection. If an application wants to use the 
services it should acquire the permission. 

 
Fig 1. An example illustration of collaborative model 

and its security 
In Fig. 1 there are three applications A, B and 

C. Component c2 and c3 of Application A and c5 of 
Application B are exposed. Component c2 is protected 
with permission p and c5 is protected with permission 
p1 while component c3 is not protected. Application A 
holds the permission p1. Suppose Application C is a 
malicious application trying to access component c5 of 
Application B. Since Application C have not acquired 
permission p1, required to access c5 it cannot access c5 
directly. However Application C can access c5 indirect-
ly through component c3 of Application A. This is pos-
sible because c3 is a public component without any 
protection. Application C can access c3 without any 
restriction (where as it cannot access c2 because it is 
protected with permission p) and since Application A 
has already acquired the permission p1, c3 can access 
c5 component of Application B. So by accessing c3, Ap-
plication C can indirectly access c5.  

This example shows that every component of 
an application should be protected in order to ensure 
security. Leaving at least one component unprotected is 
risky. An unprotected application may put a well pro-
tected application at risk.   
 
4.3 Four Threat Levels Of Android Permissions 

• Normal- minimum security risk permission, 
granted automatically by the system   

• Dangerous-higher security risk permission, 
requires explicit user consent 

• Signature- used by applications signed with 
same certificate, granted by the system after 
comparing the certificates & found a match 

• Signature Or System-similar to signature level 
except that it can also be granted  to applica-
tions reside in the system image 

4.4 Permission Based Attack 
Suppose a user trying to install an application. Then 
the application will ask certain permissions and instal-
lation will proceed only if the user grants the permis-
sion. Some applications may ask for extra permissions 
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that may include access to almost all features of device 
and user data. This is an attack itself called permission 
based attack. It goes through the following procedure 

1. The developer develops the application. 
2. Uploads the application to application store. 
3. User downloads the application. 
4. Before the installation, application asks for 

certain set of permissions. 
5. User can either reject the permissions and 
cancel the installation or he can grant the per-
missions and proceed to installation 
6. Usually, user grants the permissions with or 
without understanding the list of permissions 
asked.  
7. Once the application is installed, applica-
tion/ developer will get access to device fea-
tures and user data. 
Sometimes, after a while an installed app may 

prompt for update. If device is running in Android 5.0 
or lower, this update will be installed automatically. 
For higher versions, there will be an extra permission 
request to be granted by the user [20]. 

In permission based systems extra permissions 
are also a way to insecurity. Given example shows how 
an extra permission make the system prone to attacks. 
Suppose user A installs an image to pdf converter ap-
plication with the following permission approval.  

1. To read gallery 
2. To access camera  
3. To read contacts 
4. To get complete network access.  
It is clear that the 3rd and 4th permissions asked 

here are extra permissions. By installing this applica-
tion, it can read contacts in user A’s phone and can 
transfer it to server or to any other locations without 
the knowledge of user A. So the security breaks. 

Also Permission Re-Delegation attack, which 
is an attack in which less privileged application misus-
es privileged applications to perform the malicious task 
can be occurred[21].  

 
4.5 Risk Of Apis & Information Flows 
A set of functions and procedures allowing the creation 
of applications that access the features or data of an 
operating system, application, or other service are 
called as APIs. In general, it is a set of precisely defined 
methods of communication among various compo-
nents. Applications have two ends generally. Front-end 
and back-end. Front-end deals with UI/UX, creating the 
components which is directly visible to the user and 
backend deals with data storages, data manipulation 
etc. The front end and back-end is linked by the APIs. 
Front-end will collect the required datas and call the 
required APIs for data manipulation and storage.  

APIs bring a lot of adavantages in developing 

an android application. It make the development pro-
cedure speedy and easier. Although, it has some securi-
ty risks associated with them. Simply, it is a great door 
way for hackers to collect confidential datas and to per-
form malicious activities.  

Information flow is simply the movement 
of information. An application, which does not exhibit 
any malicious behaviour explicitly can track the datas 
and informations in the device in which it is installed 
and send over network to a server or store it in a data-
base for further manipulations without the owner’s 
knowledge. So, there lies a big security risk related 
with the information flow.  

There will be differences in the information 
flows of malicious and benign applications. We cannot 
neglect the chances for information flow in the two 
applications being same.  Eventhough the information 
flows are same , the structure of these flows may be 
quite different. 
 
5. OVERVIEW OF PROPOSED SYSTEM 
The proposed system composed of six modules. Two of 
them are on client side and remaining four on server 
side. App behavior tracker module in the android de-
vice will track the behaviour of installed applications in 
the phone and log creation module will record those 
behaviours as a  log file. Later, this log file will be send 
to server over the network for behaviour rebuilding 
purpose and for further analysis. The log analyser 
module will analyse the record and rebuilds the behav-
iour as a graph. Code analyser module will perform 
APK decompilation and static analysis. The obtained 
features will stored in a database(feature library)and 
later it is used for training the classifiers. The architec-
ture of the system is in Fig 2. 

 
Fig.2. Architecture of mDroid 

6. MDROID  
6.1 Initialization 

The initialization module is in responsibility of 
generating resource files when the mDroid application 
is used for the first time. Clearly, some resource files 
may need to be copied, and some files may need to be 
created, such as the uid_file and directories for log files 
and behavior graphs. Nonsystem applications are 
shown as a list each time the user opens the mDroid 
application. The detailed information of each nonsys-
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tem application need to collected. The information in-
cludes the name of the application and the application 
package, version(name & number) of the application 
and id  of the application. 
6.2 Behavior Tracking 
6.2.1 System Call Interception 

We first obtained the address of system call ta-
ble and intercepted the specific system calls. Then 
source addresses of required system calls are noted and 
let it be handled as usual. Four types of system calls are 
intercepted in our system: Android interprocess com-
munication, file operations, network operations, and 
process management. Among these system calls, An-
droid interprocess communication can be parsed by 
Binder Parser, as most of the system calls depend on 
the Android Binder mechanism; other system calls can 
be directly parsed using System Call Parser. 
 
6.2.2 Information Flow Extraction 

Next step is the discovery of Information-
Flows. Infornation-Flow analysis described here is dif-
ferent from the traditional information flow analysis 
which mainly focuses on the discovery of a flow from a 
single source to a single sink. Here individual single 
source to a single sink flows are aggregated and con-
nected. We leverage data flow analysis techniques to 
extract paths contained within each simple flow. If two 
information flows share a common path then these two 
information flows are grouped together. Each group 
can contain multiple information flows, which means it 
can contain multiple sources and multiple sinks. We 
then analyze these flow groups and extract API se-
quences present within them.  
While doing so, we analyze control-flow paths in each 
flow group to extract API call sequences. , All the code 
paths (control paths with branches and loops) are ex-
amined statement by statement, in the execution order  
to extract APIs. Here Android Intents are also consid-
ered. Intent will be treated as a sink since it’s a potential 
point to leak data outside.  
6.2.3 Other Feature Extraction 

Features considered here are information code 
segment and resource segment. In order to obtain in-
formation of  code segment we need to extract API call 
information and data stream information. As we gath-
ered API information already, data stream information 
is the only thing that we need to extract. For that, user 
definition chain, which contains all the activities of a 
data used in a software is used.  

 
6.3 Behavior Rebuilding 
        The behaviour rebuilding module in the server is 
responsible for rebuilding the application behaviour as 
a graph so that it will be more convenient for the users 
to understand the behaviors. The behaviour graphs are  
generated by using log records prepared by the behav-

iour analysis module in the client device. So these rec-
ords must be sent to server for rebuilding the bahavior.  
6.4.1 Graph Creation Algorithm  
The graph creation algorithm is presented below. In the 
algorithm, “uid” stands for the unique id of an An-
droid application, “pid'” stands for the process id, and 
“cid” stands for the id of  child process. Since we create 
a node for each record in the log file, the time complex-
ity of the algorithm is O(n), where n stands for the 
number of records in the log file.  
Algorithm : Graph Creation 
1) Start 
2) Create a root node 
3) For each record in the log file, repeats steps from 3 to 
8 until the log file become empty           
4) Extract uid, pid, cid(if the system call is clone) the 
name of the function, and parameters from each log 
record 
5) Check whether there is a node corresponding to this 
uid, if yes go to step 6 else goto step 9 
6) Check whether there is a node corresponding to the 
pid obtained in step 4, if yes go to step 7 else goto step 
8 
7) If there is a cid,  create a node corresponding to this 
cid and make it the child of the node corresponding to 
its pid 
8) If there is no node created for the pid, create one 
node and make it as the child of the node with its uid 
9) If no node for uid, create a node and make itas the 
child of root node.  
10) Stop 
 
6.4 Constructing A Feature Library  
After the feature extraction we need to create a library 
of these features. The extracted features(ie. Information 
flow features, API features, data stream features and 
resource segment information) of both malwares and 
benign applications are stored in this library for train-
ing and identification purpose. During the training 
process,  we converted the feature library into a feature 
vector of length n where the i-th dimension of the vec-
tor is the i-th functional feature in the library. 
 
6.5 Apk Decompilation 
The server receives the APK of an Android application 
and extract permissions and APIs from it[23]. For de-
compiling APKs, a decompiler provided by Google 
called, APKTool is used. The tool generates files such as 
source codes, a configuration file, and resources. By 
traversing the configuration file (AndroidManifest.xml) 
list of permissions can be obtained. Android applica-
tions are often built using java. So the android system 
own a java virtual machine implementation called 
Dalvik VM itself. The Dalvik VM uses the dex format 
and smali/baksmali is the assembler for the dex format 
used by Dalvik. The APK decompilation tool decom-
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piles the .dex file into .smali files. No tools to decom-
pile back to java. Hence, we traversed all smali files and 
each and every line starting with an “invoke,” (which 
represents a function call) is extracted. Then, the APIs 
are extracted by parsing those lines. 
 
6.6 Permission, Api And Application  
As the first step, four numbers need to be calculated: 
the number of malware applications with the permis-
sion, the number of benign applications with the per-
mission, the number of malware applications without 
the permission, and the number of benign applications 
without the permission. Similarly, these four numbers 
are calculated for each APIs. In order to find whether 
there is a  relation between presence of a permission 
and the nature of an application owning the permission 
a chi-square test is applied. The below given equations 
(1) & (2) are used to calculate the chi-square values[22]. 
In the equations, a stands for the number of malware 
applications with the permission, b stands for the 
number of benign applications with the permission, c 
stands for the number of malware applications without 
the permission, d stands for the number of benign ap-
plications without the permission, and n stands for the 
number of applications. In the case where the value of 
a, b, c, or d is less than 5 and value of n is greater than 
40, the correction equation (1) is used. In normal cases, 
equation (2) is used.  

 

 
This chi-square test considers permissions and 

APIs that are used more than 50 times. Chi-square val-
ue and the correlation between the presence of permis-
sion and the nature of an application is directly propor-
tional. As the value increases, correlation also increases. 
After ordering the chi-square test values first 80 are 
selected and defined as characteristic attributes. The 
final step is to train our naïve Bayes classifier with 
these characteristic attributes.  
We calculate the conditional probabilities of the charac-
teristic attributes. Using the data in the database, we 
can determine the probability of an application being 
malware with a certain characteristic attribute, proba-
bility of an application being malware due to without a 
certain characteristic attribute, the probability of an 
application being benign with a certain characteristic 
attribute, and the probability of an application being 
benign without a certain characteristic attribute. 
6.7. Classifier Training & Malware Identication 
We collected samples of malware and benign applica-
tion and extracted features of both category. We used 

support vector machine as well as naïve Bayes classifier 
in this work. Support vector machine can be trained by 
feature vectors mentioned in Section 6.4. Our system 
learn how malwares leverage information flows and 
what types of behavior it contains and notes the same 
in case of benign applications also. We use this as the 
features to train the SVM. So that, our system will be 
able to specify if an app leverages information flows in 
a benign or malicious way. In general, our classification 
system will detect if an information flow is suspicious 
or not based on the app’s behavior along the infor-
mation flow.  
In short, the app is benign if the flows perform mean-
ingful operations similar in structure to other benign 
apps and malicious if the structure is similar to other 
malicious apps. With the information flow features, we 
also considered code segment and resource segment 
informations to train SVM. Since our proposed system 
classifies both categories of applications training using 
samples of both are preferred. 
The steps for training naive Bayes classifier is as fol-
lows. First, the server receives the APK and the log file 
of an application from the client. Then, the APK is 
parsed according to Section VI. E.. In addition, we also 
extract the permissions and APIs recorded by behavior 
tracker from the log file. Then, using the probabilities 
from before, the probability of the application being 
malware as well as the probability of the application 
being benign can be determined. Finally, the two prob-
abilities are compared to identify the nature of applica-
tion.  

Now we have two set of results, one from SVM 
and one from NB. Finally by comparing these two re-
sults we finalize the application into either malicious or 
benign. If any of the two result specifies the application 
has malicious activity, we categories it as malware. Our 
two set identification is intented to ensure that no ap-
plication could overcome the test. Even if it could es-
cape from one test by any chance, it should be caught 
by other one. 
 
7. DISCUSSION & EVALUATION 
In this paper, we have proposed and implemented a 
real time behaviour analysis system to identify mal-
ware applications in android platform. We have con-
sidered features such as permissions, APIs, information 
flow, code segment and resource segment information. 
The multiple features are expected to improve the effi-
ciency of the malware identification. We trained the 
system using samples of both malware and benign ap-
plication. On testing, our proposed system is proved to 
be efficient and obtained an accuracy rate of 95.39%. 
In future, we think the system can be improved by fol-
lowing ways. 

1) Improve the graphical representation by inte-
grating informations from both static and dy-
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namic analysis . i.e. by integrating all the fea-
tures considered. 

2) Extend the analysis to identify malware 
games. 

3) Improve the accuracy by including different 
type of classifiers such as kNN, DT and RF. 

4) Enhance the system by considering more fea-
tures such as 

a. Sytem call frequency 
b. Presence of key information such as: 

crypto code;  dynamic code; native 
code; reflection code and  database 

8. CONCLUSION 
Based on several features such as permissions, APIs, 
and information flow a new system for identifying an-
droid applications is proposed. This real time system 
performs a hybrid analysis on applications by leverag-
ing machine learning to detect malicious behaviors 
exhibited by them.  Required features are extracted and 
trained classifiers with these features. On evaluation, 
our system found to be efficient and obtained an accu-
racy rate of 95.39%. 
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